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Abstract

The analysis of the combinatorics resulting from the perturbative expansion of the transition
amplitude in quantum field theories, and the relation of this expansion to the Hausdorff series leads
naturally to consider an infinite dimensional Lie subalgebra and the corresponding enveloping Hopf
algebra, to which the elements of this series are associated. We show that in the context of these
structures the power sum symmetric functionals of the perturbative expansion are Hopf primitives
and that they are given by linear combinations of Hall polynomials, or diagrammatically by Hall
trees. We show that each Hall tree corresponds to sums of Feynman diagrams each with the same
number of vertices, external legs and loops. In addition, since the Lie subalgebra admits a derivation
endomorphism, we also show that with respect to it these primitives are cyclic vectors generated
by the free propagator, and thus provide a recursion relation by means of whigh-thB-vertex
connected Green functions can be derived systematically from+teetex ones.
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1. Introduction

It has been conjecturdd 7] that because of the interplay of Quantum Mechanics and
General Relativity at the Planck scale, space—time ought to be regarded as a derived concept
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whose structure should follow from the properties of Quantum Field Theory. Perturbative
quantum field theory (PQFT), albeit its conceivable limitations at distances of the order of
the Planck length, is the only computational tool available at present, and so the elucidation
of the mathematical structures behind that theory is a suggestive first step in pursuing this
line of thought.

One of these structures, which is based on the original work of Krefibjemd further
developed iff2-5], is now generally known as the Hopf Algebra of Renormalization and it
provides the underlying mathematics behind the Forest Formula in the process of renormal-
ization. Basically this Hopf algebra can be represented by Feynman diagrams or decorated
rooted trees, where decorations are one-particle irreducible (1PI) divergent diagrams with-
out subdivergences. Other Hopf algebras related to rooted trees and to the Hopf Algebra
of Renormalization have been discussed in the literature, such as the vector space Hopf
algebra of rooted trees of Grossman and LafspnThe connection of this algebra with the
algebra of Kreimer and Connes was analyzeff]rand more recently revised [8]. For
a formulation in terms of a single mathematical construction of the several Hopf algebras
described by rooted trees see van der L|&n

The essential point of the Kreimer—Connes formalism is tiegn that a theory is
renormalizablean appropriately defined twisted antipode, based on the minimal subtraction
scheme of renormalization, generates the counterterms corresponding to the BPHZ Forest
Formula and the antipode axiom provides a systematic procedure for deriving the physically
correct and finite expression for a given diagram.

However, the mere fact that the twisted antipode axiom, or for that matter the Forest
Formula, provide a finite answer does not suffice to make the theory physical. Itis crucial, in
order that the theory be renormalizable, that the resulting counterterms are of the same form
as those in the original Lagrangian and that they can be absorbed into the bare parameters
of the renormalized Lagrangian in a consistent manner. Generally this is not possible, and
in such a case the theory is described as nonrenormalizable.

Of course if we know a priori that the theory is renormalizable then the Hopf algebra of
decorated rooted trees or of Feynman diagrams remains most valuable both as the math-
ematical structure behind the Forest Formula as well as for a systematic construction of
renormalized Green functions.

Another Hopf algebra related to rooted trees by a canonical mapping is the algebra of
normal coordinates that was recently discuss§tih In that work undecorated rooted trees
were considered, and the relevance of normal coordinates to the conégmiimiitiveness
as well as their role in the process of renormalization was analyzed. It was also shown
there that for undecorated ladder trees, or to that effect for nonbranched trees with only
one decoration (such as in rainbow diagrams), the renormalization of the associated normal
coordinates is a one step procedure. However, when the diagrams for a theory involve more
than one decoration (as is usually the case) ladder normal coordinates are in general no
longer primitive, even though one can still expect them to posses a milder pole structure
than that present in the rooted tree coordinates.

Some of the pertinent questions left open in the above cited paper concerned the physical
interpretation of the normal coordinates and whether perturbation theory could be formu-
lated directly in terms of them without having to go first through the algebra of rooted trees
or Feynman diagrams. These questions provided some partial motivation for the present
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work where we investigate some additional Hopf algebra structures that can be associated
naturally to the Hausdorff series expansion of PQFT. Specifically, we show here that the
power sum symmetric functionals of these perturbative expansions are elements of a free
Lie subalgebra as well as Hopf primitives of its enveloping free algebra. Moreover these
primitives can be expressed as linear combinations of Hall polynomials and, diagrammati-
cally, as Hall trees. We show also that a Hall tree corresponds to sums of Feynman diagrams,
each with the same number of vertices, external legs and loops.

In addition, since the Lie subalgebra admits a derivation endomorphism, we further show
that—with respect to it—these primitives are cyclic vectors generated by the free propagator,
and thus provide a recursion relation by means of whicliithel)-vertex connected Green
functions can be derived systematically from theertex ones.

Lastly we show that the Hopf primitives considered here are normal coordinates resulting
from a canonical mapping applied to the Poincaré—Birkhoff-Witt basis constructed from
the complete homogeneous symmetric functionals, which appear also naturally in the Haus-
dorff series expansion of PQFT. This combinatorics is reminiscent of the one appearing in
[10], but the possibility of a deeper relationship between the two Hopf algebras, and there-
fore a possible physical interpretation for the normal coordinat§s0fy requires further
investigation.

The paper is structured as follows: $ection 2wve begin with a brief review of the main
steps that lead to the perturbative expansion of the transition amplitude, and describe its
relation to the Hausdorff series and to the associated Hopf algebras for which the power sum
functionals are primitives. I8ections 2.1.1-2.118e free algebra related to these structures
is discussed and it is shown that the functional primitives are linear combinations of the Hall
polynomials that generate the Lie subalgebra of our free algebra. We also show that this
Lie subalgebra admits a derivation endomorphism with respect to which all the primitives
are cyclic vectors generated by the free propagator. The diagrammatic representation of the
primitives in terms of Hall trees is also discussed in this section and shown to give a clear
image of this cyclicity and of the iteration process by means of whichithe 1)-vertex
connected Green functions can be constructed from-hertex onesSection 3s devoted
to a discussion of our main results and possible lines of future related research. We also give
there an explicit and heuristic argument, based on a Birkhoff decomposition of the Hopf
algebra considered here, which we believe helps to stress some of the points made in this
introduction.

2. Algebraic structuresin perturbation quantum field theory

Let us begin with a brief summary of the essential steps in PQFT leading to the Green
functions, with the dual purpose of making our presentation self-contained as well as for
identifying the basic mathematical and physical entities to which the Hopf algebras con-
sidered here are related.

For an arbitrary field theory the Euclidean transition amplitude (the formulation in
Minkowski space is achieved by analytic continuation) is given by

We[J] = N / Do e/ I lLotLim—3-9], 1)
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Here ® denotes the set of fields appearing in the theory,Jaddnotes the set of arbitrary
currents introduced to drive each fiéldlsing functional derivatives the amplitu¢tt) can
be rewritten as

We[J] = e~ Eim®/330) g=Z°Mlyor0], )

whereLint(8/3J,) is the Lagrangian of interaction written in terms of functional derivatives
of the field currents (x), andWo[J] = e 2’ W[0] is the free generating functional. The
symbol (), stands for integration over the variable(after acting to the right with the
functional derivative). Note that the functional derivatives with respect to the currents act
according to the Leibnitz rule on the term%O[J], and functional derivatives that go through
to the right of that term cancel when acting ¥[0]. Thus hereWg[J] is a functional and
not an operator.

To simplify our exposition we shall consider the neutral scafatheory in Euclidean
four dimensions when doing explicit calculations. It is well known that this theory is renor-
malizable and a clear discussion of the steps leading to its renormalization may be found in
[11]. For this case the transition amplitude(ir) reduces to

We[J] = N/D(p e_fd4x[(1/2)3u¢3u</’+(1/2)m2(/’2+V(tﬂ)—ﬁ/’], 3)

and(2) becomes

We[J] = e~ (Ve/30)x = 2Ty 0], (4)
where
] A &

vi—)) = [ dx=—, 5
< (81x)>x / a5 ©
Wol0] = N / Dy e | EA/Dp3u0+1/2m?e?] 6)
201 = 3@ Ay I () (7)

and
1 g €rey
b= s | ©
is the Feynman propagator in four-dimensional Euclidean space.
Writing We[J] = e~ %El/]l and rearranging4) results in
Ze[J] = —In Wo[0] + Z°[J] — In(@ + X V(e Ve _ 1y e ZW(1)),  (9)

1 Following Ref.[11] we use the notatiof/g[J] for the generating functional of connected and disconnected
graphs, andZg[ /] for the generating functional of connected graphs, sometimes the opposite notation is used in
other works.
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where, in order to make both sides of the above equation consistent, we have explicitly
included the action on the identity function of the operator inside the logarithm, so as to

cancel derivations to the right of € 1/, Now let
o(h) = (@ VD) 1) e 21y = 3 kL], (10)
k>1

where the second equality is the formal power series expansion of the first one in terms of
the coupling constart in the potential. If we further define

Y =Y Myl =In |14+ > a5 ], (11)

k>1 k>1
it then readily follows from(9) that

Ze[J] = —In Wo[0] + Z°[J] — >~ akynl J1. (12)
k>1

Note that in the theory of symmetric functiofi2,13] an expression likg11) relates

the complete homogeneous symmetric functions to the so called power sum symmetric
functions or Schur polynomials, so we can use the combinatorics of that theory to write
down the explicit (invertible) relation between the functiongld J] and theS;[J], as
homogeneous polynomials of ordem the latter. This is given by

SI
Y[ J] = Z<—1>“”‘1m (13)
[I|=k
where[ is a composition/ = (i1, ... , i) of nonnegative integerg/| = ), ix is its

weight,/(]) = risitslength and’ = S, S, ... Si,. In terms of the Feynman diagrammatic
representation, the,[J] correspond to linear combinations of connected graphs each with
k vertices.

Defining the operator

(G ) e
=z Z —ad(ZO[J])” << ( 8§x1)>x1) : (14)

n>0

where the adjoint operator in the second equality is defined as the right normed bracketing:
adb)*(a) = [b,[b,...,[b,dl],...], one can verify that the functional§, introduced
above are given by the recursion relations

1
S1[J] = X(D), SulJ] = ;X(Snfl[J])(l)v (15)

whereX (1) denotes the action of the operat@#) on the identity function.
In the same way that generates a recursion relation for the functiorsalsve will show
below that a derivation operator can be defined which when acting oy {hg leads to
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expressions analogous(tth). We first analyze some of the algebraic structures behind the
operators occurring i(4) and (9)

2.1. Algebraic structures

As mentioned irBection 1 one of our goals in this paper is to investigate the relevance to
the process of renormalization of Hopf algebra primitives that occur naturally at a predia-
gram stage in PQFT. Therefore, these primitives must be related to the two entities appearing
in the perturbation expansion of the transition amplitude, i.e. the complete homogeneous
symmetric functionals and the power sum symmetric functionals.

From the theory of symmetric functions we know that one can associate respective Hopf
algebra structures to these two sets of functionals for which/ilid] are primitives. In
addition to the above, there is a free algebra generated by the op@fatord the functional
Z0[J] for which they [ J] are also primitives. We describe these three Hopf algebras which
are related by the following diagram

K<{Sk}>K<{g}> CK<{¥h}> = K<Y>
U
SK({‘I’k}) “— SK(Y)

) &
o

2.1.1. Thefreealgebra K(Y) and its Hopf algebra structure

Let K(Y) be the unital free associativ€-algebra over a field of characteristic zero
(including Q) and generated by the two-letter alphabet {Z9[J], (V(8/8J,)),} of non-
commuting variables, with concatenation as multiplication and unit (neutral) eleintieat
empty word. Let g (Y) be the infinite dimensional free Lie algebra®mwhere its elements
are submodules df (Y) with Lie bracket as multiplicationk (Y) is the enveloping algebra
of £x(Y). We can giveK (Y) a Hopf algebra structuif@4] by defining a primitive coproduct
on the alphabet letters:

AD=1®1, (16)
A =10 21+ 2] © 1, 17)
AV =10 (V)+(V)®1 (18)

and extending it to words by the connection axiom. The antipode is given by
Sa)=—a (a= (V) or Z°[J)]), (19)
S =1 (20)
and is extended to words by the anti-homomorphism

S(ay ...ay) = S(ay,) ...S(ay). (21)
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The counit mag : K(Y) — K is defined on the generating letters by
gla)=0 (a= (V) or Z°LJ]), (22)
e(1) =1 (23)

and is extended to words by the connection axiom. All the elements (Lie polynomials)
P e £k(Y) are primitives of this Hopf algebra:

AP=10P+PR®1 (24)
and
S(P) = —P, (25)
e(P) = (P, 1), (26)

where(P, 1) is the coefficient inP of the unit element.
We introduce now oIk (Y) a derivation which mapg&/(3/5J,)), onto 0, andZ%[ J] onto

X by means of the operator
ad
—X—. 27
9Z9[J] 27)

Clearly D is an endomorphism oK (Y).
Since Z9[J] and (V(3/8J,)), do not commute, the action of the derivatiénon an
arbitrary function ofZ°[J] is given by[14]:

1
DUZOLID) = ) ad Z°L) 2L 021D (28)

k>1

and, in particular,

0 1 0 eed—=2°lD _ 1 0
pE#Vh=3" Zad-2p Tt e P = (—o x)e# Ul
=t ad(—Zo[J])
:gﬂmmﬂfm,gﬂnz_lv<ﬁﬂ e 201, (29)
N\ \ea /],

where in going from the third to the last equality we have made ugkidfMoreover, since
D((V(8/3J;))x) = 0, we immediately get

npyne—Z0LJ]N _ _ i ! —Z00J]
et (o)) v

Using now once more the fact thax is a derivation, we have that the exponential map
w = € is a homomorphism of algebras and

0 A 50 1 o L
o Zme 2 () o

n>0 n>0

— o (V®/3J0))x o=2°1J] (31)
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Furthermore, sincg is a continuous homomorphism,

)\'W
e_<V(B/8',X))X e_Zo[-’] ZM(e_ZO[-]]) zel/v(_zo[‘/]) zexp (Z FD” (ZO[J])) , (32)

n>0
where
n >0 — (_1\n L L 0
D) = 0" (X5 )+ (X ) 2D @)
Writing
e¥ — e (VO/3I0) o= 2°L]. (34)

we obtain from(32) and (34the Hausdorff series relation

L EVAUEDY %Dk(ZO[J]). (35)

n>1

Let us now define

1
Uy = FD"(ZO[J]), (36)

which exhibits the operatondf; as cyclic vectors with respect # generated byZ%[J],
and rewriteX, introduced in(14), as

1 10, 5
5 (3]

where ZO[J], (V(3/8J,))]; is defined recursively byZ°[J], (V(8/8J))x]; = [Z°[J],
[Z90J], (V(8/8J))x] j—11, [ZOLJ]. (V(8/8.J:)):]o = (V(3/8Jy))., and the upper indexin
the sum above is the degree of the functional derivativie/id/3J,)), (n = 4 for theg*
theory).

It clearly follows from this and33) that the cyclic vectora¥; are elements of ¢ ()
and, hence, primitive elements of the Hopf algekird’).

In addition, sinceD is also an endomorphism alx (Y) there is a Hochschild cohomol-
ogy associated with this algebra for whi¢his a 1-cochainD : £x(Y) — £k (Y) with
coboundary

bD(P) = (id ® D)A(P) — D(P)® 1, P e £x(Y). (38)

EvidentlybD(P) = 0, because df24), so the Lie polynomial$®, and in particular tha,,
are 1-cocycles for this cohomology.

Note that by applying both sides @35) to the identity function and recallin() we
recover(12), with the functionaky[J] given by

mm=—%wa%mm. (39)
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Furthermore, since thg;[J] are made up by linear combinations of Lie monomials that
do not cancel when acting from the left on the identity they are obviously also elements of
Lk (Y) and primitives of the Hopf algebr&(Y).

We can derive a recursion relation for the cyclic functionglfJ/] by observing that the
right side of(39) can be written as

n >0 — (—1)\" —3 —8
D"(Z[JH() = (-1 (X8ZO[J]> <XBZO[J])X Q). (40)

n—1

In particular, forn = 1

-D(Z°[JID(D) = (X <ZO[J])) D) =X(1) =y, (41)

9Z[J]

which is in agreement witfiL5) and (13)

To further see how to interpret the right side(dd) for n > 2, use(37) and note that
in order to take into account the fact that the identity cancels functional derivatives acting
on it, we must first apply the — 1 derivations in(40) to X following the Leibnitz rule,
evaluate each of the resulting derivations Xnnside the commutators by acting on the
identity function according t¢39), and finally act with the resulting bracket polynomial on
the identity. Thus

o H{(rfn) )

_ L0
_ﬁ( 8ZO[J]>

d
o (<v> UL 200 + T 2 200 + Y (20, <V>]j) &
=

= % <_[<V>, vl + %[[(V), vl 201 + %[[(V), A NIREEE ) ),
(42)

o= (xazop) (¥ ) ¥) @

-5 (‘)

x (—[<V>, X]+ %[[(vx X, O[] + %[[(vx ZOL0, X1+ ) 6h)
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[ ()]
‘2 Hw), ((xﬁh) x) (1)] , ZO[J]}

1 0 9
t3 ([HV% 21 ((XazT[J]> X) (1)} +I[V), vl yal + - ) @
=~ 2@V vl ~ V). 2l Z + V). v vl

—[[(V), Z°LJ0), w2] + - - (. (43)
Iterating on the above, we get the general recursion relation
] = —— Dyl =~y (44)
WIH-]. - l’l+l Wn - n+1wlaZO[J] wn-

It should be recalled, however, that in the implementatiof4d) one has to takey; =
—(1/2) Z;?:l(l/j!)[ZO[J], (V(8/3J:))x];, perform the derivations to the required order
and then evaluate on the identity function.

We can express the above results in graphical form by making use of Hall trees. To this
end recal[14] that each Hall treé of order at least 2 can be writtenfas= (', 1), where
n’ andh” are the immediate left and right subtrees, respectively, and such that the total
ordering

h<h",  h' <h" andeithei’' €Y, ork’ = (x, y)andy > A" (45)

is satisfied. This ordering is lexicographical and is determined by the letters in the alphabet
Y that label the leaves. Also, each node in a tree corresponds to a Lie bracket and the
foliage f(h) of the tree is the canonical mapping defined fig) = a if a is in Y and
f(h) = f(W) f(W") if h = (W', h") is of degree> 2. Now, since a Hall word is the foliage
of a unique Hall tree, and since for each Hall warthere is a Lie polynomiaP;, it can
be shown that these Hall polynomials form an infinite dimensional basis of the Lie algebra
Lk (Y) viewed as aK-module. Parenthetically, one also has that the decreasing products
of Hall polynomialsPy, ... Py,, h1 > ---h, form a basis of the free associative algebra
K(Y).

Consequently, using the orderitig) < Z°for our two letter alphabet and the algorithm
given in the proof of Theorem 4.9 [&4], we can always write the;[J]'s, as derived from
(36) and (44)as linear combinations of Hall polynomials (equivalently Hall trees). Thus,
for example

1 1 | z° 1 @ff
= - == 7 — — 0o 2 _— VA A
¥, =X= /\((‘) /\:sznz 6&“+24 Rz )
vy z° (V) Z vy z (V) z (46)

SO

1 1 z° 1 r%o_
1;/'1[-]]:‘1’1(1)2"?2—)\ /QZO +a /@ZU T 24 //\@Z% '

vy 2° vy 2° (v) 2° 47)
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and

¥o= 2,\A 4)\(//\\ +//\\‘I")

(vVy ¥ vy ¥ wy 2°
1 z° z° O,
—m z0 + ¥, + 70
V) ¥ vy 2° vy z2°
+EX( » T v, T Rz + 2> )’
e ahze e o)z (48)

- 1
1'»_;[JJ’ = /\ a( //\\Z°+ /QU-'ALI])
(V) v

e (V) ] (vy 2°

1 z° z° ¥1[J]
—m 70 + ‘[J] + z9

vy wilg] vy 2° vy 2z°

2N J] vy z° (49)

Note that(47) and (49)or the functionalsy1[J] and ¥>[ J] imply acting on the identity
function from the left with the diagrams and replacing in addition#én the foliage of
(48) by y1[J]. The corresponding Hall tree faro[ J] is obtained by grafting4 7) onto each
of the branches labeled wiily[ /] and implementing the above mentioned algorithm. The
procedure is then iterated to whatever order ofiff®one is interested.

By a straightforward calculation one can verify that the final expressiong4fof] and
Vo[ J] in terms of propagators for the* theory are

1
wﬂﬂ=—EﬂMm&wMﬂmhhhM%—&Awhﬂmhhﬁ+$A@L (50)

1 15 1
xyab

2
(Ja AaxAxxAxyAybAycAyd JpJc Jd)xyabcd

(JaAaxA AyyAbeb>xyab+4

3
+ 2(4|)<J o Jp Aax Apx A xyAycAydJe Ja)xyabed

2(3|)2<J adbJe AxanbechyAydAyeAnydJ Jf)xyabcdef
3
—n4
+ 48< )y 2(4l)
The expressions for higher ordégrs are increasingly more lengthy, but amenable to a

systematic derivation by the above procedure. This we have done by developing a REDUCE
program which confirms the results given above.

—— (A Af Ayyhy. (51)
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2.1.2. TheHopf algebra K {{S})

As we have seen iaq. (12)the power sum symmetric functionalg[J] appear naturally
in PQFT as aresult of a perturbative expansion (in the coupling parameter of the theory) of
the transition amplitude. In terms of tt$e] /] thesey[J] are given (cf.Eq. (13) by the
Schur polynomials. Using as generators $is, one can construct a universal enveloping
algebrak ({Sx}) by introducing a Poincaré—Birkhoff-Witt basfs, S;,, Si; Si,, ...}, and
defining multiplicationm as the disjoint union of the elements of this basis. Further, a
coalgebra structure can be generated by defining the coproduct

k
ASH) =) Si®Si, So=1 (52)
i=0

and a counit as the augmentation of the algebra by

e(So) =1, eSk) =0, k#0. (53)
We can give this coalgebra the structure of a Hopf algebra by additionally defining an
antipodes as the involutive homomorphism (because of commutativity)

S(SK) = =Sk —m(S @ i) A(Sp), (54)
whereA is the coproduct operation with the primitive contributions removed.

SinceK ({S¢}) is commutative, by the Milnor—Moore theorem there is a cocommutative

Hopf algebra in duality with it which is necessarily isomorphic to the universal enveloping

algebrad(£), wheref is a Lie algebra. The generatdfsof £ are infinitesimal characters
of K{{Sk}), i.e. they are linear mappindgs : K{{Sx}) — K{{S}) fulfilling the conditions:

(Zi, Sk) = Siks (55)
(Zi, SkS1) = (Zi, Sk)e(S) + (S(Zi, Si). (56)

We shall denot§l5] by d CharK ({S;}) the set of infinitesimal characters &f{S;}). Note
that £ is Abelian, since the coproduct K({S;}) is cocommutative.

The exponential mappiny_, o; Z; — exp)_; «iZ;) € G, equipped with a convolution
productx and unitl,:

(x*n,8) = (x®n AS), x,n€g, (57)

(L, Sk) = &(Sp), (58)
together with the inverse

xt=xo05, (59)

generates a subgrowgjof the group of characters &f ({S}).
G is dual to the Hopf algebr& ({Sx}) and it is multiplicative, i.e. it satisfies
(X SkS1y = (X% Sk} {x: Si)s x€G. (60)

Moreover, from(57) and the fact that the Lie algebra®@€harK ({S;}) is Abelian, we have
that the convolutive product in our case reduces to

eri%iZi g @i BiZj _ o3 (@itB)Zi (61)
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2.1.3. The Hopf algebra K {{y} >

The Hopf algebra ({S;}) induces another Hopf algebi&({v}) by applying a change
to normal coordinatef 0] to our original Poincaré—Birkhoff—Witt basis, constructed from
the S; coordinates, by means of the map with the canonical ele@eateX: Z®¥i which
acts as an identity map, i.e.:

(eXiZi®Vi g ®id) = Sk. (62)

It is not difficult to verify that the nonlinear relation between thgs and S;’s resulting
from (62) is given by(13), and that the/;’s acquire a primitive coproduct

Ak =1@ Yr + ¥ ® 1 (63)
and an antipode given by
S(Wi) = =Y. (64)

Note that sincg13)is invertible K ({S}) >~ K{{y}).

As a parenthetical remark we point out that the normal coordinates that we construct here
differ from those recently discussed[it0] in relation to the Hopf algebra of rooted trees,
by the fact that in the context of the latter the comultiplication giveri@8) corresponded
to nonbranched trees, and that for the more general case of branched trees it was determined
by application of the Baker-Hausdorff-Campbell formula.

2.2. Hopf primitives and connected Green functions

In order to establish explicitly the relation of thig[ /] functionals to the Green functions,
observe that because thdegged connected Green functions in PQFT are obtained from
the functional variation

8" Ze[J]

GW (1, ) = — ———2 | 65
E 81+ 8Jn | =g (69)
we have that
1 1
wilJ] = FZW@(«)()‘L'“ X)L ), (66)
n=0 ’

where G,(c”) are the Euclidean Green functions resulting from adding all the connected
Feynman graphs with vertices and: external legs# is even for they* theory). Note

also that(66) contains contributions from the Green functicﬁg’) which correspond to
vacuum terms. These contributions may be absorbed in th&pJa] term in (12) via the
normalization constany.

The analytical expressions for the graphs composing the Green functions result, in gen-
eral, in ultraviolet divergences, and the standard procedure for removing them is to first
apply dimensional regularization and then successively the Forest Formula. It is at this
stage where the Kreimer—Connes Hopf algebra formalism provides an important insight
into the underlying mathematics behind the Forest Formula of renormalization. Indeed, by
noting that each Feynman diagram corresponds to a decorated rooted tree (or a sum of
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decorated rooted trees in the case of overlapping diagrams) and that these rooted trees, as
well as the diagrams themselves, are the generators of respective universal enveloping Hopf
algebras, these authors have shown that the operation with a twisted antipode on the algebra
provides a systematic application of the Forest Formula and, consequently, a systematic
procedure for generating the counterterms needed by the theory in order to cancel the un-
wanted infinities. Connes and Kreini&j further show the relation between the algebra of
characters, dual to their Hopf algebra, and the Birkhoff algebraic decomposition. A detailed
exposition of these ideas may be found in the papers citSeation 1

Here we only stress once more the fact that in our approach we deal with the Hopf prim-
itives Y, € £k (Y) rather than with Feynman graphs directly. As we have seen, these Hopf
primitives are Lie polynomials where each monomial is a Hall tree that itself corresponds
to a sum of Feynman diagrams withvertices each and an equal number of external legs
and loops. This last observation can be read off directly from the word composed by the
foliage of a Hall tree. First because the number of external#eigghe Feynman diagrams
constituting a Hall tree is given by

E:2N20—N5/51V, (67)

whereN ,o is the number of times the lett&® appears in the wordys,s, the degree of the
functional derivation in the potential, the number of vertices which is equal to number of
times the lettefV) appears in the word, so all Feynman diagrams composing a given Hall
tree have the same number of external legs. Second, because the topology of the Feynman
diagrams implies that the number of loops is fixed by the number of vertices and the number
of external legs by the relation

(N—2)V =E+2L -2, (68)

whereN is the total number of legs per vertel) ( 4 for theg? theory) andL the number
of loops, so also all Feynman diagrams composing a Hall tree have the same loop number.

3. Discussion

As already mentioned isection 1 given that a theory is renormalizable, the Hopf
Algebra of Renormalization developed by Connes and Kreimer provides insight into the
mathematical structures behind the Forest Formula and is extremely useful in numerical
calculations since it gives a systematic procedure (amenable to computer progrdfréi)ing
for evaluating the renormalized Green functions. In a parallel vein, the Hopf alg&bha
investigated here, helps to exhibit some complementary mathematical structures associated
with the Hausdorff series expansion of perturbation theory. We have shown the relation
of the [ J]'s to the Hall polynomials, and that of their graphic representation in terms
of Hall trees to the Feynman diagrams. Also, making use of the cyclic vector character of
the Y[ J]'s with respect to the derivation endomorphidm which appears as part of the
structure of the Lie subalgebra &f(Y), we have obtained a systematic procedure (also
subject to computer programming) for constructing all the Green functions of the theory
starting from the generat@®[ J]. Moreover, since each action bfintroduces an additional
vertex in the commutators conforming tii¢[J]'s, one could hope that a further study of



220 M. Rosenbaum et al. / Journal of Geometry and Physics 49 (2004) 206-223

this operator and its possible deformations would result in further mathematical insights on
the process of renormalization.

Note, however, that because of the Hopf primitive character ofygiv]'s and their
relation to the Green functions given £§6) one should not expect that the application of
the algebraic Birkhoff decomposition to our Hopf algebra should be immediately related to
the Forest Formula. The Hopf Algebra of Renormalization begins where our Hopf algebra
ends. Nonetheless, a unit&lalgebra homomorphismt : {K(Y)} — A from the free
algebrak (Y) to the (unital)K-algebraA of meromorphic functions on the Riemann sphere
with poles at the origin, followed by a the Birkhoff decomposition allows us to exhibit more
explicitly and in a heuristic fashion the point made in the second paragrapbaation 1
Indeed[15], if we let A = A_ @ A be a Birkhoff sum of thekK-linear multiplicative
subspaceA_ andA ,, whereA _ = {polynomials inz~* without constant terinandA ;. =
{restriction to(C — {0}) of functionsinHolom(C)}, and if we further letl’ : A — A_ be
the Rota-Baxter projection operator, satisfying the multiplicative constraints

T(ab) + (Ta)(Th) = T[(Ta)b + a(Th)], a,b € A, (69)
then the algebraic Birkhoff decomposition
b+ =Pk, (70)

(where the operatok denotes the convolution produ@tx¢’)(w) = ma(¢p ® ¢')(Aw),
¢, ¢' € Homg_ag(K(Y), A)), together with the Hopf primitive character of thig[/]'s
immediately imply that

dWYilID = o+ Wl ID) — ¢ WilJD) = b+ (Wil[JD) + T (Y [JI]). (71)
Thus, by virtue of66),

¢+ (W) =17 Z 1 (G (1, o ) )

1 (m)!
—(T[C(x1, - s ¥l I, (72)

where we have put the projectdrinside of the integration in the second term(62) after

taking into account that the currentsare good test functions, so the pole structure of the

integrals is determined by that of the Green functions. In addition, the projectiBndi

ofthe connected Green functions is taken in the Mass Independent Renormalization Scheme.
Recall now the basic equation of the renormalization group which relates the dimen-

sionally regularized bare and renormalized connected Green functions, and which in our

notation readS'

ad

aJ1 aJy,

Z(Aw s = 57+ 55 Wil D (73)

In the above, the subscribdenotes that the regularized Green functions in the momentum
representation, occurring in thig[J]'s, are expressed in terms of the bare parameters of

the theory, i.ex[J1)s = 3o\ [IDs = (L/A5) 3, o/ NG b(p1s - - -, pus
Ab, Mp, €), Ap = Z A\, m,f = Znum?, (JO)p = Z, / Ji., while the subscripR on the right
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side of (73) denotes the/;’s evaluated with the renormalized Green functions. Further-
more, in the Mass Independent Scheme the counterterms contain no finite contributions
and are polynomials in inverse powerseofvith coefficients depending only on so the
renormalization parametei,, Z, and Z,, are polynomials in inverse powers efwith
coefficients depending only on

If we replacg(71)in (73) and observe that the right side of the later equation is finite, we
thus arrive at the following set of equations:

lim | Finite § 3 (2" 2," (G (p.... . pus 2 Zum®, )1

k>0
=Y (G (1. paihom)R (74)
k>0
and
Poles) Y (Z) 25" 2(G{" (1. ... . pui b Zum?, )y p =0, (75)
k>0
where
() : 2
(Gk (p19 ] pn» )\‘s me ’ 6))(+)
o [G(”)( 7 2 _ (n) 2 76
=[G (p1,--- s Pns Zmm®, €) — T(G " (p1, - - -, Pns Zinm®, €)] (76)
and
G (P1e - s Pui s Zum®, )<y = TG (P1. - ., Puy Zmm?, €). (77)

But if, and only if, the theory is renormalizableg. (75)can be solved consistently and
order by order in the powers @f i.e. only then the counterterms can be absorbed into the
parameters of the theory, and only then the theory will be physical. Formally, the substitution
of the resulting renormalization functions into the left side(t4) would then yield the
physically meaningful renormalized Green functions. In such a case, however, the standard
recursive elimination of subdivergences via the Forest Formula (or the Connes—Kreimer
Hopf algebra) would clearly be a more efficient manner to derive these quantities. On the
other hand, the opposite is not necessarily true: The fact that the forest formula provides a
finite answer does not suffice to make the theory physical, it is also necessary that the poles
of the ill-defined regularized Green functions can be absorbed into the bare parameters of
the theory.

To conclude, we would like to comment on several other possible lines for future work in
addition to the ones already mentioned. Thus, for example, since there is a duality between
concatenation and shuffle produgi4,18] there are actually two bialgebra structures on
K(Y): The one considered here with product (words) made out by concatenation of letters
of the alphabet and coproduct defined by (16—18), the other one with shuffle product and
coproduct defined by

A(w) = Z (w, U)u v, (78)

u,veY*
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whereY* is the free monoid ofY. It may be interesting to investigate the relation of this
other bialgebra to the primitiveg;[J] discussed here, and if this relation has a possible
relevance to renormalization.

One could also ask ifitis possible to carry out a program starting from the Hopf algebra of
Feynman diagrams and perform a Legendre transformation to a Hopf algelravatiich
would no longer be primitive, and by exponentiation to a Hopf algebr$, oft would be
interesting then to consider not only the Hopf algekifa/, } but alsoK {v;}/ ~, where~
stands for an equivalence relation coming, e.g. from a Ward identity. Some of these lines
of work are under present consideration and the results will be reported elsewhere.
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